
Real-time augmentation of a children’s card game
Jordan Rabet

Stanford University
jrabet@stanford.edu

Abstract—Still today, trading card games make up a sizable
part of the entertainment industry. However, their tired paper
form is being rapidly taken over by digital equivalents. In this
paper, we propose a way to reinvigorate interest in physical
trading card games by making them more interactive through
real-time 3D augmentation. While our ideal application would
run on an AR headset such as the Hololens, we build a proof-of-
concept application on a commercially available Android tablet
which is able to augment existing Pokemon trading card. We
show that using a modern CPU in conjunction with a GPU, this
task is entirely tractable on a mobile device with few restrictions.

I. INTRODUCTION

Many trading card games are based on the idea of cards
representing monsters or other entities which are used to
fight one another. Playing one prominent example of such
a game, Yu-Gi-Oh, is often portrayed in media as being
accompanied by holograms representing those monsters
and their actions, which make the game more fun and
engaging to play. The goal of this project is to build a mobile
application which is able to augment an existing trading
card game in a similar fashion. While the ideal target for
such an application would be an augmented reality headset,
the application was developed for a commercially available
Android tablet (specifically, the Nvidia SHIELD tablet we
have been provided) because of the current lack of such
headsets as consumer products.

A. Previous work

There are several commercial products which offer similar
functionality to this project. The most notable of these is
the Playstation 3 game ”The Eye of Judgment”, developed
by Sony Computer Entertainment and released in 2007. This
game implemented the same concept of augmenting physical
gamecards to make playing for engaging; however, it differed
in several key aspects :

1) Game cards were designed specifically for the purpose
of being augmented in this game. In fact, they were all
marked with special tags meant to make detection and
classification easier : CyberCodes [?].

2) The scene was controlled : players had to place a
mat supplied with the game to place their cards on.
Additionally, the camera had to be mounted above said
mat using the supplied camera stand. The camera had
to be immobile during the duration of the game.

3) The game ran on the Playstation 3, a powerful non-
mobile device, more powerful than modern tablets.

4) The camera used (the Playstation Eye) was designed for
computer vision purposes, and was therefore capable of
streaming uncompressed video at high framerates (up to
120 frames per second).

A more recent, similar example is ”Drakerz”, a game released
in 2014 for the PC. While it does not require a playmat, it
still requires that the camera be immobile and mounted above
the playing field. It also runs only on modern computers.

B. Contributions

The main contribution of this project is building an end-
to-end system which is able to detect, classify, track and
augment multiple commercially-available trading cards at once
in real time on a mobile device. It mostly differs from previous
comparable applications by the fact that the camera need not
be fixed, that the required computations were optimized for a
mobile device, and that the gamecards being augmented were
not designed for the purpose of augmentation, making the task
more challenging.

II. TECHNICAL EXECUTION

A. System overview

Our system’s goal is to take sequential camera frames as
input, detect Pokemon game cards in them, track their position
through time and finally augment them with the appropriate
3D representation. In order to achieve this goal, we divided
our system into five distinct components :

• Card detector : takes a single frame as input and attempts
to find all cards it contains, outputting a list of 2D quads
corresponding to the detected cards.

• Card classifier : takes a single image extracted and
rectified from a frame (likely by the card detector) and
matches it against known game cards to find which one



Fig. 1. Diagram representing our augmentation system’s organization .

it is. If found, returns the name of the corresponding
Pokemon as well as the quad’s proper orientation.

• Card tracker : takes frame n−1, the location of a card at
frame n − 1 (in the image plane) as well as frame n as
input and outputs the location of that same card (in the
image plane) at frame n.

• Pose estimator : takes 4 points in the image plane
representing a square in world space and outputs its world
space position and orientation.

• Scene augmenter : takes a single frame accompanied by
the corresponding 3D locations and orientations of cards
in world space and outputs the scene augmented with 3D
models on top of corresponding cards.

A system’s flow can be seen in Figure 1. The main loop
consists of the latest camera frame being sent to the card
tracker, with the tracker’s output being fed the pose estimator
which in turn goes to the scene augmenter. When initializing
the system, the camera’s latest frame is also sent to the
card detector, which uses the card classifier to identify cards
before injecting its findings into the card tracker. The card
detection system is run at a much lower frequency than the
tracker due to higher computational requirements. In practice,
for the purposes of our tests, the detector was only run
when the user tapped the tablet’s screen, which ended up
being sufficient thanks to the tracker’s robustness. For the
final product however, we envision the detector continuously
running in its own thread/core in parallel to the main loop.
In order to simplify the problem, we currently make the
assumption that all cards are located in the same plane, and
that the camera’s intrinsics are known (ie, we assume that we
know that camera matrix K).

B. Card detector

The game card detector’s goal is to allow the system to
automatically find relevant targets in the current scene without
having the user manually tag them. Unlike previous works,
our application is built to work with the approximately 10,000
Pokemon cards already in circulation [5], meaning we cannot
equip them with specially designed markers making detection
easier. That being said, as can be seen in Figure 2, Pokemon
cards do have a very distinctive feature : their thick, yellow
border, which is what our detector targets. Interestingly, most
trading card games have a similarly thick border on all their

Fig. 2. Sample Pokemon card. Note the thick yellow outline .

cards (though it isn’t usually yellow), making the idea of
detecting cards by looking for their border applicable to more
than just the Pokemon trading card game.

The borders we are looking for have two main
characteristics : as tick borders to a quadrilateral, we
can expect them to show up as two quadrilaterals in edge
maps, and being bright yellow, we can expect to be able to
distinguish them from the rest of the scene based on color.
As such, the first step in our detection process is finding all
pixels which might belong to a card border based on color.
In order to do this, we first apply a white balance filter in
order to correct colors and make sure our detector will work
in different lighting environments. In the current version, this
is done using global histogram equalization on individual
RGB channels. While this method was only supposed to
be a baseline, it ended up yielding very good results under
multiple different lighting conditions, so it was kept. Then,
we convert the color corrected image to the HSV color space,
where we apply a simple threshold function to keep only
pixels which are approximately the right color. The values
for this threshold function were manually tuned and chosen
in order to be more permissive than restrictive; in most cases,
this filter will catch a large amount of pixels outside of card
borders, but this is remedied later in the detection pipeline.
Then, we compute an edge map of our image using the
Canny edge detection filter applied to a Gaussian-blurred
version of the frame. We then blur the resulting edge map
using a flat 5x5 kernel, blur the color threshold image with
a 21x21 Gaussian kernel, and compute the element-wise
product of those two images. The result is a bitmap where
all lit pixels have to be near both a well defined edge and
the color yellow. An example of those steps can be seen in
Figure 3. As can be seen, while the color map and edge map
show a lot of data which is not related to the targets, once
put together they yield a decently accurate search area.
With this bitmap generated, the goal becomes to isolate



parts of it which might be cards and eliminate those which
aren’t. This is done by finding all connected components in
the image. This can be done rather efficiently in a single
top-to-bottom left-to-right pass on the image, by connecting
each lit pixel to its left and top neighbors if either is also
lit, and merging components together if they both are. That
done, we filter connected components to eliminate unlikely
candidates; doing this, we assume that there should be a 1:1
mapping between components and cards, and therefore we
discard components which are too small (likely noise), those
which are contained in another component (likely yellow
markings on the card’s illustration), as well as components
which do not have the right proportions (likely due to noise,
glare, or an extraneous and unfortunately colored object). The
results of this filter can be seen in Figure 3.

With only components deemed likely to be an actual
card’s border left, we consider them each individually. Doing
this means taking each component’s bitmap and taking its
bitwise AND product with the original edge map. Doing
this gives us an edge map which should correspond to the
border, which we then use to fit a quadrilateral to represent
the card. An example of the output of the AND product
can be seen in Figure 4. Quad fitting here is done using the
Hough transform, and is a fairly simple process. We run the
Hough line detection algorithm (with an angular resolution of
1 degree) on the card candidate’s edgemap, which returns a
list of local maxima lines sorted by number of votes. We go
through this list in descending order of votes and only keep
lines which are different enough from previously picked lines,
in order to only keep the best lines of each cluster, stopping
at a maximum of 8 lines (though we typically end up with
fewer than 6). That done, we go through combinations of the
lines, computing all possible intersections, and only keeping
combinations which result in exactly 4 intersections within
the region of interest. Assuming there is more than one such
combination, we pick the one which results in the largest area
quad, which becomes our initial estimate for the card’s border.

We then refine this estimate by using a targeted version
of the Hough transform with an angular resolution of 1/128
degree, whose angular space is limited to angles less than 0.5
degrees away from our initially estimated. This allows us to
get a better angular estimate of the lines simply by running
the Hough line detection algorithm again, at no extra cost
compared to the one run earlier in the detection algorithm.
The results of the detector are then used to compute a
homography between the found borders and a rectangle with
the dimensions of a card, which is in turn used to perspective-
rectify cards. Those rectified images are then sent to the
classifier.

C. Card classifier

Image classification was not the focus of this project, so
in the interest of time little of our resources were put into
making it. As such, the chosen classifier is not particularly

Fig. 3. Sample run of detection pipeline. From top to bottom : original image,
color-filtered image, edge-map, ”border-map”, filtered connected components.
(each color represents a different component)



Fig. 4. Sample product of a connected component by the edge map. Left
: original edge map. Right : product of edge map by connected component
border. .

well adapted to the problem; it was mostly made as a proof-
of-concept, as well as to take advantage of the geometry
consistency test’s result in the detector and to make the final
augmenter’s output look nicer without having to manually pick
the types of the detected cards.
The method which was implemented is a simple version of
a bag-of-words classifier. First, we extract SURF features
from training images in order to cluster them into a visual
vocabulary. Then, we train a 1-versus-all SVM for each of the
target images based on its histogram response to the full visual
vocabulary. With that done, classification can be performed
by taking the rectified card candidate query image extracted
by the detector, extracting SURF features from it, matching
those features to the vocabulary, computing the histogram
response and running it through all the SVMs. We then get
a score indicating how the confidence in the query image
matching one of the given training images. We take all n cards
which have a confidence score above a certain threshold, and
then run a geometry consistency test on them, by matching
SURF features from the query image with those from training
images directly and computing a homography using RANSAC.
Finally, the training image whose homography is computed
with the highest number of inliers is chosen as the one which
matches the query image. Doing this geometry consistency
test is especially useful because it gives us the query image’s
absolute orientation, which in practice is necessary information
for our pose estimator.
As previously mentioned, classification is not the focus of
this project; as a result, this approach is fairly slow and
not immediately scalable to large numbers of card types. In
practice, given the high number of individual Pokemon (over
700, each of which require their own 3D model, textures,
animations, sounds...) and of individual Pokemon cards (on the
order of 10, 000), one could imagine that hosting the classifier
as a service on a distant server which the client would send
query images to, and would in return give information on the
card accompanied by the assets necessary for augmentation.

D. Card tracker

The goal of the card tracker is to determine the movement
of a card between two frames so that neither the detector
nor the classifier has to be run again each frame, which is

of course desirable in order to achieve good performance
and smooth augmentation. The tracker works separately for
each card in order to make independent card movement
possible, though tasks which can are batched together for
peformance reasons. The tracker is first initialized for a
card when it receives an initial position from the card
detector. When that happens, the tracker detects Shi-Tomasi
”Good Features to Track” [4] as implemented in OpenCV’s
goodFeaturesToTrack method and saves those which are
located within the initial quadrilateral estimate.
When a new frame is received, the first thing done by the
tracker is computing KLT optical flow for the card’s features.
This is done to get an initial estimate of the motion between
the two frames : since our target is planar, a homography is
computed between the frames using those feature matches
(with RANSAC for outlier resiliance), and this homography
is then applied to the card’s four corners. Unfortunately,
doing just this is not enough : this kind of optical-flow
based tracking is extremely prone to drift, especially in
low resolution and noisy environments. While it might be
able to maintain a good estimate of the card’s location, the
card’s shape slowly changes over time, which is extremely
problematic given that the card’s shape being accurate is
essential to good pose estimation.
Due to this, the optical flow tracking is only used as an
initial estimate each frame. Once this initial estimate is done,
it is used as a search region for the actual new position of
the card. A quad of slightly larger size is used as region of
interest in an edge map (again computed using the Canny
edge detector), which is then fed to the same quad fitting
algorithm as the one previously described in the card detector,
which a few differences. First, the edge map has to be filtered.
Instead of relying on color (which can be unreliable, partly
due to glare) to isolate the border, we filter out the card’s
contents by only keeping the left-most and right-most pixels
on each row, as the top-most and bottom-most pixels on each
column. This filtering can be done efficiently and in practice
gives completely usable results, as can be seen in Figure ??.
Additionally, instead of having the quad fitting algorithm look
for the quadrilateral with the largest area, it instead looks
for the one that minimizes the cumulative distance between
the old and new quads. In case the tracker is unable to fit
a quad, it sticks with the initial estimate based on optical
flow. An overview of the card tracker can be found in Figure 6.

Another problem which the tracker has to deal with is
sudden camera movements, both big and small, which throw
off the KLT tracker. Indeed, a problem with the approach
presented above is that if the optical flow tracker’s initial
estimate is too far off, then the quad fitting algorithm will
fail to recover from it. While smooth movements typically
result in good initial estimates, quick camera jerks (typically
unintentional) can ruin the tracker’s accuracy. In order to
deal with this, we first attempt to detect those instance by
computing the variance of the distance betwen corresponding
card corners as estimated by the optical flow tracker. The



Fig. 5. Sample product of the edge map border filter. Left : original edge
map. Right : border-filtered edge map. .

Fig. 6. Diagram representing the card tracking system .

idea is that if the movement is smooth and the timestep is
small enough, then the shape of the card will have changed
relatively little between two sequential frames, meaning that
the variance would be low. On the other hand, if the movement
is not smooth and the optical flow tracker results in an estimate
which is largely off, then the variance will be high. In practice,
we were able to find a threshold on that variance above
which we determine that a problem occured with the optical
flow tracker. When this happens, we replace the homography
computation with a (still RANSAC-based) the estimation of
an affine transformation between the matching features. This
way, we are able to keep a sane shape for the card without
sacrificing the knowledge the optical flow tracker gives us
about the card’s likely translation and rotation between the two
frames. Implementing this largely helped improve our tracker’s
robustness.
In practice, we observed that this tracker performs quite well,
is robust to a number of potentially problematic situations
(partial occlusion, glare, camera jerk, slight motion blur) and
at a relatively low cost in performance overhead thanks to
optimizations which are described below.

E. Pose estimator

For every frame, once we are confident that we have found
a reasonably good estimate of a card’s corners in the image
plane, we need to determine the card’s pose in world space,
which entails finding its position (represented by a translation
vector) as well as its orientation (represented by a 3x3 rotation
matrix). There are many so-called PnP (Perspective-n-Point)
methods which can be used to estimate camera’s pose relative
to an object given the object’s three dimensional shape and
its corresponding image plane points. These methods can
in fact be directly applied to this problem (the baseline we
used for this part of the system was OpenCV’s solvePnP

Fig. 7. An example of pose ambiguity; both images represent correct
mathematical solutions to the pose estimation problem. .

method), however they are not ideal for multiple reasons.
The first reason is that being geared towards a more general
problem (that of an arbitrary 3D object), they are less than
optimal for our problem which only involves planar objects,
and performance is definitely a concern for real-time mobile
applications. The second reason is that the best PnP methods
are iterative and only converge towards a single solution,
which is problematic as, in the case of planar objects, it was
shown that there are in fact two local minima which each
yield a separate solution pose to the problem [2]. In order to
deal with this ambiguity, it is necessary to know what both of
these solutions are, making generic PnP solutions inadequate.
An example of the pose ambiguity problem can be seen in
Figure 7.

Thankfully, there exists a method made to estimate the
camera’s pose relative to a square marker which deals with
both of those issue [3]. Essentially, the method introduces
a parameterization of the pose which depends on a single
variable, the primary angle β, which both allows us to find the
two ambiguous solutions and make extensive use of look up
tables (LUTs) to accelerate the process. Making use of both the
original paper and a matlab implementation of the algorithm
provided by the authors, we were able to recreate the algorithm



in C++ and integrate it into our system. Of course, because
the algorithm is made to work with square targets while ours
are rectangular, we apply the right scaling transform before
calling the pose estimator. This makes it especially criticaly
that the card’s orientation be known, as applying the scaling
over the wrong direction would yield a wrong pose.
In order to deal with pose ambiguities, we rely having more
than a single card being tracked by our system. Each card pose
yields 4 points in 3D, on which we can use RANSAC to fit a
plane. Given the nature of the ambiguities, this should allow
us to find the plane the cards are actually located on, since
we assume that all cards are coplanar. Then, using this plane’s
normal vector, we can, for each card, find the pose which is
closest in orientation to that plane, which should be the pose
we are after.
In addition to this, we make use of the fact that all cards are
located in the same plane to deal with potential outlier cards.
For example, there are situations in which 3 cards will have
been tracked properly, but the fourth’s corners are improperly
registered for a few frames. By default, the fourth card’s pose
would be computated as being completely different from the
others. In order to deal with this, we cluster plane normals
extracted from each card’s pose, determine which normals
might be outliers, and then compute the plane normal as the
average of inlier normals. We then reinject that average normal
into each card’s pose by setting it and then applying Gramm-
Schmidt orthonormalization to the rotation matrix.

F. Scene augmenter

The scene augmenter module was made using OpenGL ES
2.0 for rendering. It works by first transferring the current
from to the GPU as a texture, and rendering it as a flat image,
clearing the depth buffer at the same time. Then, a projection
matrix is computed for the actual augmentation. This camera
matrix is based on the camera matrix K, but is modified
in order to preserve depth information, which is needed for
OpenGL rendering. If we have :

K =

fx 0 cx
0 fy cy
0 0 1


Then the projection matrix is as follows :


2fx
w 0 2cx

w − 1 0

0
2fy
h 1− 2cy

h 0

0 0 n+f
n−f

nf
n−f

0 0 1 0


Where w and h are the frame’s width and height respectively,
n is the near plane’s distance and f is the far plane’s distance.
The models used for augmentation are rendered using an
OpenGL ES 2.0 OBJ parser and renderer written for the
occasion.

G. Platform-specific optimizations

In order to get this complex system to run at acceptable
speeds on a mobile device, many optimization specific to the
platform had to be made. The first one is of course the use
of look-up tables for pose estimation, which was mentioned
above. The second one has to do with the quad fitting
algorithm also described above. As it is used in the tracker, it is
important that it be very efficient. Its initial implementation,
based on the HoughLines function defined in OpenCV, was
found to perform very poorly. After investigation, it turned
out that while the function was based on look-up tables,
those were re-generated each time the function was called.
Additionally, parts of the function made use of doubles which
are far slower than single precision floats on our target device.
In order to improve this design, the hough line function was
reimplemented, based on the OpenCV code, but changing the
way look-up tables are generated (only once per resolution
value), all the code which used double precision floats, and
actually doing away with floats in some parts of the function
by switching the look-up tables to use fixed point math. No
loss in precision was measured, while the average call to the
function was made 6 times faster.
Another costly operation in the tracking pipeline was found to
be the sparse KLT optical flow calls. First of all, the individual
calls made for each card’s tracking were mutualized into a
single call using for all tracked features at once, which helped
make the use of optical flow more tractable. Additionally, the
optical flow computation was completely moved from the CPU
to the GPU using CUDA, which made the process twice as
fast. Similarly, the computation of the Canny edge map (after
the Gaussian kernel) was changed to be done using CUDA,
multiplying the speed threefold. A related design choice had
all ”fundamental” image transformations such as the edge map
computation, color correction and conversions all be stored in
a single ”frame sequence” object in order to make sure that the
same computation would never be done more than it needed
to be each frame.
Finally, in order to make use of the fact that our target device
has not only powerful GPGPU capabilities but also a quad core
CPU, the card tracking process was changed to make good use
of multithreading by spawning 4 worker threads each able of
processing an individal card’s tracking in parallel to others. In
most cases, this multiplied the tracker’s overall speed by 4.
A visualization of the final tracking pipeline can be seen in
Figure 8.

III. RESULTS

A. Performance

As is indicated by the previous section, performance was
a major concern while making this application. In the end,
we were able to achieve an overall average of 14 frames per
second in most situations with 5 or fewer cards, which is more
than enough to be considered real time application. In Table
I, the average time taken for each task of main loop can be
found. What we can see is that the optimizations made to the



Fig. 8. Diagram representing the current tracking pipeline’s distribution across
computing devices .

TABLE I
PERFORMANCE OF THE MAIN LOOP. PERFORMANCE RECORDED WHEN

TRACKING 4 CARDS.

Task Device Average time taken
Sparse optical flow GPU 19.6ms
Canny edge map GPU 19.3ms

Single Hough transform CPU 10.2ms
Quad fitting CPU 23.6ms

All cards tracking update GPU and CPU 45.5ms
Single card pose estimate CPU 0.58ms
All cards pose estimate CPU 3.2ms
Processing entire frame GPU and CPU 73.5ms

system’s various modules were very effective. For instance,
each pose estimate is done in only half a millisecond; similarly,
the multithreading used to parallelize card tracking results in
very little overhead, allowing the application to process 4 cards
almost as fast as a single core is able to process a single one.

B. Quality of augmentation

It is difficult to accurately gauge the accuracy of the
augmentation as we do not have any kind of ground truth,
especially in the case of orientation. A (flawed) metric which
can be used to somewhat assess the quality of the tracker is
the number of cards for which the tracked is able to fit a
new quad each frame. A graph representing this metric can
be found in Figure 9; interpreting it, we can see that most
cards don’t seem to go long without getting a new quad fit to
prevent drift, except for one which apparently doesn’t get a
new fit for the entire middle section of the sequence.
Qualitatively, we can say that the tracker manages to be robust
to a number of problematic situations. For example, it is able to
be robust to glare in certain situations, as can be seen in Figure
10. Additionally, it is able to withstand partial occlusions for
short periods of time, as can be seen in Figure 11. It is also
robust enough that a variety of angles work well, even very
low angles which let the user look at augmented models from
the side, as can be seen in Figure 12. More impressively, it is
robust enough that having a user move cards while the camera
itself is being moved around with their finger is not a problem,
be it rotations or translations, as can be seen in Figure 13.
That being said, while the tracking is overall robust and
accurate, the final result is not perfect. Unfortunately, the

Fig. 9. Graph representing the number of frames which the tracker success-
fully fit a quad to over time, in a scene with a total of 6 cards being tracked
.

Fig. 10. An example of the tracker showing robustness to glare. (bottom left
card) .

output still suffers from intermittent jitters, typically due to
poor quad fits happening in certain frames. This indicates that
tracking could still be improved, as well as the normal vector
outlier rejection mentioned previously.
A video showing the augmenter running under a variety of
conditions (including the ones described above) can be found
attached to this paper.

IV. FUTURE WORK

While this project’s results are very encouraging, they do
not make a full product. Due to lack of time, all potential
optimizations and features could not be included in this
project. For example, the tracking pipeline presented in Figure
8, while already producing good enough performance, leaves
to be desired in that it does not make optimal use of all
computing devices at all times. Instead, one could imaging a
tracking pipeline closer to that described in Figure 14, which
has the GPU processing data for frame n while the CPU is



Fig. 11. An example of the tracker showing robustness to partial occlusion.
(bottom right card) .

Fig. 12. An example of the tracker showing robustness to a low viewing
angle. .

Fig. 13. An example of the tracker keeping up with a variety of user card
movements.

Fig. 14. Diagram representing the a possibly better tracking pipeline’s
distribution across computing devices .

still processing data from frame n−1, as such a pipeline could
as much as double the currently observed framerate.
Optimization is not the only part of the project which could
be expanded upon. Indeed, although the project runs on a
mobile device and requires an accurate estimate of the device’s
location relative to its environment for proper augmentation, it
currently makes no use of any of the on-board inertial sensors.
One could imagine that integrating signals from those sensors
could help make tracking even more robust, as well as give a
good heuristic to help decide between ambiguous poses in the
pose estimator.
Finally, a big part of trading card games is actually playing
with them. While augmenting cards with 3D models already
helps make the game more engaging, it is not enough for
an application which aims to fully augment card game duels,
by for example animating Pokemon attacking other Pokemon.
While the underlying rendering part is trivial, detecting that
a player is commanding one of its creatures to attack is
not. Doing so would require maintaining a coherent map of
the battle field, including attached semantics such as card
ownership and card status (for example, detecting that a card
is sideways which in a lot of card games is indicative of an
action). One could imagine implementing some kind of card-
based gesture recognition system to allow the application to
fully follow the duel.

V. CONCLUSION

With this paper, we demonstrated that it is entirely possible
to augment a trading card game in real time even in spite
of the absence of specially designed markers on cards, of a
fixed camera or of heavy computation capabilities. We paid
close attention to code and algorithm optimization in order
to get the system running smoothly on a mobile device, the
Nvidia SHIELD tablet. We leveraged of both the CPU and
the GPU for computation, and found that our card tracker is
robust enough to handle users moving cards while the camera
is also moving independently. We made suggestions for ways
to expand on the project in both purely technical ways and
more feature-oriented ones.

REFERENCES

[1] Jun Rekimoto and Yuji Ayatsuka, CyberCode: Designing Augmented
Reality Environments with Visual Tags 2001.



[2] G. Schweighofer and A. Pinz, Robust pose estimation from a planar target
2006.

[3] Shiqi Li and Chi Xu, Efficient Lookup Table Based Camera Pose
Estimation for Augmented Reality 2011.

[4] Jianbo Shi and Carlo Tomasi, Good Features to Track 1994.
[5] Pokepedia, Pokepedia list of Pokemon cards. http://www.pokepedia.net/


