

STANFORD UNIVERSITY

Using location to see!

Amir R. Zamir

Phone + Camera!

0

O

Phone + Camera + GPS!

Phone + Camera + GPS!

Vision + Location!

Why not just camera? Why not just GPS?

Vision + Location!

Geo-localization

Where the user have visited?

Input Video

Desired output

Where the user have visited?

Object Detection

Conventional Object Detection

Not limited to mobile devices

Geographical Data Organization

Bruegger's Bagel25 Market SquarePittsburgh, PA 15222User Rating: 5/5Nicholas Coffee Co.23 Market SquarePittsburgh, PA 15222User Rating: 4/5

Assisted Content Analysis on Mobile Devices

Building 3D models [59]

Geo-spatial Perspective

- Three fundamental questions in Geo-spatial Analysis of Ground Level Images and Videos:
 - 1) How to automatically geo-localize images and videos?
 - 2) How to refine the geo-location of already geo-tagged data?
 - 3) How to utilize the geo-location in content analysis?

Automatic Geo-localization:

- Image geo-localization using Generalized Graphs
- Video Geo-localization and trajectory extraction
- Robust Refinement of geo-location using Random Walks
- Location-Aware image understating:
 - Location-aware object detection
 - Precise recognition of storefronts in images

Paper:

Image Geo-localization Based on Multiple Nearest Neighbor Feature Matching Using Generalized Graphs. In **T-PAMI**, 2014.

"Where Am I?"

> Problem:

Accurate Image Localization

Input

Mere Visual Information (Images)

Output

Location in Terms of λ (Lon.) and ϕ (Lat.)

"Where Am I?"

> Problem:

Accurate Image Localization

Input

Mere Visual Information (Images)

Output

Location in Terms of λ (Lon.) and φ (Lat.) φ =40.4419, λ =-79.9986

Google Maps Street View Dataset

332 6th Ave, Pittsburgh, PA φ=40.4418, λ=-79.9987

Google Maps Street View Dataset

332 6th Ave, Pittsburgh, PA φ=40.4418, λ=-79.9987

Street View Dataset

Reference Images Place Marks

Query Images

Pittsburgh, PA

Ambiguity of local features

4111D

Ambiguity of local features

- common in urban area
- Disambiguation using global features:
 - Global Color Histogram
 - GIST
 - Geo-tags

Using Multiple Nearest Neighbors

Using Multiple Nearest Neighbors

Using Multiple Nearest Neighbors

Generalized Minimum Clique Problem

• Clusters of nodes.

Generalized Minimum Clique Problem

- Clusters of nodes.
- GMCP picks exactly one node out of each cluster
- The cost of the clique is minimized.

Forming Input Graph to GMCP

K-partite Complete Input Graph

K-partite Complete Input Graph

$$\varpi(v_m^i) = \|q^i - \zeta(v_m^i)\|_l$$

$$w(v_m^i, v_n^j) = \|\rho(v_m^i) - \rho(v_n^j)\|_g$$

Generalized Minimum Clique

Generalized Minimum Clique

Subset of NNs with maximum agreement in local and global features

From feature correspondences to GPS location

Query + SIFT features

From feature correspondences to GPS location

Geo-localization Results

Match – Error: 7.6 m

Match – Error: 6.9 m

Match – Error: 308.1 m

Match – Error: 59.3 m

Geo-localization Results

Match – Error: 6.4 m

Match – Error: 199.8 m

Geo-localization Results

Automatic Geo-localization:

- Image geo-localization using Generalized Graphs
- Video Geo-localization and trajectory extraction
- Robust Refinement of geo-location using Random Walks
- Location-Aware image understating:
 - Location-aware object detection
 - Precise recognition of storefronts in images

Paper:

City Scale Geo-spatial Trajectory Estimation of a Moving Camera, In **CVPR**, 2012.

How about Videos?!

Our Approach

Segment Geo-Localization

Segment Geo-Localization

• Enforces temporal consistency.

• Enforces temporal consistency.

$$p(\mathbf{x}_t | Z_t) = \frac{p(\mathbf{z}_t | \mathbf{x}_t) p(\mathbf{x}_t | \mathbf{z}_{t-1})}{c}$$

- State (unobserved) x = [lat , long]
- Measurement (observed) z

Likelihood (Current Segment)

$$p(\mathbf{x}_t | Z_t) = \frac{p(\mathbf{z}_t | \mathbf{x}_t)}{c} \frac{p(\mathbf{x}_t | \mathbf{z}_{t-1})}{c}$$

Prediction of the state from the previous state

Prediction

(Current Segment)

(previous Segment)

MST-based Trajectory Reconstruction

Geo-localization of a YouTube Video

- Automatic Geo-localization:
 - Image geo-localization using Generalized Graphs
 - Video Geo-localization and trajectory extraction

Robust Refinement of geo-location using Random Walks

- Location-Aware image understating:
 - Location-aware object detection
 - Precise recognition of storefronts in images

Paper:

GPS-Tag Refinement using Random Walks with an Adaptive Damping Factor. In **CVPR**, 2014.

Why GPS-tag Refinement?

- What if the image is already geo-tagged?
 - Internal GPS, WPS, Cell Signal Positioning, Manual tagging.
 - Known issue: error in user shared geo-tags
 - Mean=428 meters in 20% of data.

Block Diagram

Image Matching

Trifocal Tensor

Estimations on Map (ENU Metric System)

Trifocal Tensor

Estimations on Map (ENU Metric System)

Trifocal Tensor

Estimations on Map (ENU Metric System)

Random Walks on GPS estimations

Refined Location Estimation

• Weighted mean using Stationary relevance scores: $\underline{\lambda}$

Experimental Results

- 18075 User shared Images. (Flicker, Panoramio, Picasa)
- From San Francisco, CA; Pittsburgh, PA and Washington, DC.
- Test Set: 500 randomly selected subset.

Robustification Test

- Larger amount of noise in the input:
- Adaptive Damping Factor was used. •

Additional 200m Error

- Automatic Geo-localization:
 - Image geo-localization using Generalized Graphs
 - Video Geo-localization and trajectory extraction
- Robust Refinement of geo-location using Random Walks
- Location-Aware image understating:
 - Location-aware object detection
 - Precise recognition of storefronts in images

Paper:

GIS-Assisted Object Detection and Geospatial Localization. In *ECCV*, 2014.

Location-aware Image Understanding

- Geo-localization:
 - Estimate the location of the image/video.
- Geo-tag is known?
 - Location-aware Image Understanding.
 - Most images will be geo-tagged in the future.
 - Particularly important for real world applications.

GIS Dataset

- e.g. Washington D.C.
 - Lamp posts

GIS Dataset

- e.g. Washington D.C.
 - Lamp posts
 - Fire Hydrants

GIS Dataset

- Locations of most stationary objects are documented!
- e.g. Washington D.C.
 - Buildings, Foliage, Road signs, ATMs, Fire Hydrants, Lamp posts, Cell/FM towers, Traffic Lights, Bus/subway stations, Trash cans.

Fusion of Image content and GIS

Object Detectors

GIS

Location-aware Object Detection

Obtaining Priors from GIS

Camera View

All Projections

Non-occluded Projections

Higher Order Graph Matching

Query Image

DPM Results

Loose Threshold

Tuned Threshold

Strict Threshold

GIS Projections

DPM Results

Non Occluded GIS Projections

DPM Results

Non Occluded GIS Projections

Our Results

Traffic Signal, Street Light, and Fire Hydrant are detected successfully.

Non Occluded GIS Projections

Our Results

DPM Results (Tuned Threshold)

Our Results

Quantitative Object Detection Results

Inverse of this process?!

- Geo-localization using the generic objects?!
 - Cue #1: 2×lamp posts, 1×trash can, 1×fire hydrant.
 - Cue #2: their geometric arrangement.

Geospatial Localization using Generic Objects

Geometry Preserving Score(Graph Matching)

Geospatial Localization

Example 1

Query Image

Object Detection Bounding Boxes

Trash Can

Bus Stop

Fire Hydrant

Street Light

Traffic Sign

Traffic Signal

The Correct Location Retrieved as Rank 1

The subset of matching object detections and GIS projections are highlighted.

The Correct Location Retrieved as Rank 1

High Score in Presence of Objects: lots of objects in common

High Score in Geometry: Geometric arrangement of objects preserved

The Correct Location Retrieved as Rank 1

- Automatic Geo-localization:
 - Image geo-localization using Generalized Graphs
 - Video Geo-localization and trajectory extraction
- Robust Refinement of geo-location using Random Walks
- Location-Aware image understating:
 - Location-aware object detection
 - Recognition of storefronts in images

Paper:

Visual Business Recognition - A Multimodal Approach. In **ACM** *Multimedia*, 2013.

Visual Business Recognition

Bruegger's Bagel

25 Market Square Pittsburgh, PA 15222

User Rating: 5/5

Nicholas Coffee Co. 23 Market Square Pittsburgh, PA 15222 User Rating: 4/5

Tavern,

24 Market Square Pittsburgh, PA 15222

User Rating: 2/5

Block Diagram

Business Lexicon

An over-complete list of nearby businesses
– Yelp, Yellow Pages, City Grid, etc.

Gentle Star Medspa, San Francisco Provident Loan Association, Walt Disney Concert Hall, Occasional Occasions, Casa de Campo, Golden Crown Paradise Resort, Great Parnassus Resort & Spa, Ketler Cleaning Service ,Harden Yacht Services, Dicks Auto, The Law Offices of Andrew Gebelt, Will's Handyman, **Verizon Wireless,** Photography Woomer & Hall LLP, Apprehensive Patient Dental Office, Super 8 Motel Sun Prairie 1-877-8-Dump-It Inc, Cvs Pharmacy Ray & Mari's Cleaning Service The Law Offics Of American Wills & Estates, Laurie, Mission St. Advisors, Everlasting, Ayoub Properties...

Text Processing

Image Matching

- The image might not have text.
- Too complicated/cluttered text.
- Many *relevant* images available on the web

Image Matching

• Business Lexicon as key words

PRIMANTI BROS

SUBWAY

Nicholas Coffee

National City

JACKSON HEWITT "business name", "business name+city", "business name+storefront".

Image Matching

- Between query and web images.
 - Bag of words model.

$$\psi(b_i) = \min_j |h_q - h_{i,j}|, \qquad p(b_i|X) = \frac{sig(\psi(b_i))}{\sum_i sig(\psi(b_i))}$$

Fusing Text Processing and Image Matching

Fusing Text Processing and Image Matching

Probabilistic Late Fusion

$$p(b_i) = p(b_i|m_1).P(m_1) + p(b_i|m_2).P(m_2)$$

$$P(m_1) = \frac{n_t}{n_t + n_i}, P(m_2) = \frac{n_i}{n_t + n_i}$$

Verizon Wireless, Address: 355 5th Ave., Pittsburgh, PA 15222 USER Rating: 2/5

Results

Results

Results

Computational Complexity

- Image Geo-localization: sub-linear in search + local feature extraction
- Video Geo-localization: sub-linear in search + local feature extraction + Bayesian filtering (matrix multiplication)
- **GPS-Tag Refinement:** sub-linear in search + closed form solution for Random Walks
- GMCP Matching: NP-hard, polynomial approximation: O(KL^2 + LK^δ), L:= # of clusters, K:= # of nodes
- **Object Detection:** DPM + Graph Matching

Semantic Cross-View Matching

F. Castalo, A. Zamir, R. Angst, S. Savarese

Semantic Wide-Baseline Matching

Semantic Map (GIS)

Semantic Map (GIS)

Topological and Semantic Matching

Semantic Segment Layout (SSL) features

Query Image

Query Image

Rectified Query Image + 15 Best Matchings

Query Image

Rectified Query Image + 15 Best Matchings

Experimental Results

Semantic Tree

STANFORD UNIVERSITY

Thank You!

zamir@cs.stanford.edu

A. Zamir, F. Castaldo, R. Angst, S. Savarese, G. Vaca, S. Ardeshir, M. Shah

• PAMI'14: Image Geo-localization Based on Multiple-NN Feature Matching Using Generalized Graphs

- CVPR'14: GPS-Tag Refinement using Random Walks with an Adaptive Damping Factor
- ECCV'14: GIS-Assisted Object Detection and Geospatial Localization
- ACM Multimedia'13: Visual Business Recognition A Multimodal Approach
- CVPR'12: City Scale Geo-spatial Trajectory Estimation of a Moving Camera
- ICMLA'11: Identification of Commercial Entities in Street View Imagery
- ECCV'10: Accurate Image Localization Based on Google Maps Street View
- In Submission'15: Semantic Cross-View Matching